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Example 1. The addition and subtraction functions are both valid yet depending 
upon the order in which the test suite is run, a false negative may occur. 

testAddition → testSubtraction results in two successful tests, while 
testSubtraction → testAddition results in two failing tests
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• Software tests enable developers to quickly 
identify errors and bugs [1]

• Regression Testing
• The process of testing existing software 

functionality after the introduction of 
modifications within the code

• Three main techniques:
• Test Prioritization: Runs the tests in an 

execution order such that tests which are 
likely to fail are ran first

• Test Selection: Runs a subset of tests such 
that only the tests affected by modified 
elements are ran

• Test Parallelization: Runs tests 
simultaneously across multiple 
machines/CPUs

• Dependent Tests
• Tests which yield different test results 

depending on the order of the test suite 
(example 1)

Background
• Write two separate Maven Plugins to help 

automate the process of accommodating 
dependent tests within testing algorithms
• Plugin 1 (runs on version w/o modifications):
• Instruments source and test classes to 

gather time and coverage information of 
each test for regression testing techniques

• Precompute test dependencies
• Plugin 2 (runs on version w/ modifications):
• Accommodate test dependencies on new 

versions using precomputed dependencies 
from Plugin 1. Test outputs should now 
ideally no longer contain false positives or 
negatives due to order-dependent tests

My Work

• Helps developers accommodate dependent tests 
so that they are not blocked by false positives/ 
negatives and can focus on more pressing issues 
(e.g., shipping new features)

• Microsoft estimated that for complicated systems 
like Windows, the cost of test result inspections 
(i.e. verifying if test failures are due to dependent 
tests) can cost $2 million a year [1]

Importance

• Plugins work on any Maven repository
• Plugins reduce the process to three simple steps 

with trivial manual effort
• Use of our work is 7.1% faster at producing 

reliable outcomes than regression testing 
algorithms that assume test independence [2]

Benefits

Step 1: Download the necessary repositories
Step 2: Setup the necessary variables (e.g. 
versions, paths, dates)
Step 4: Precompute test dependencies
Step 5: Move necessary files to their 
designated locations
Step 6: Setup necessary variables
Step 7: Run regression testing algorithms 
while accommodating test dependence

Process Without My Work

Step 1: Insert two blocks of XML 
code into the pom.xml file of both 
versions
Step 2: Version w/o modifications

mvn testrunner:<plugin1>
Step 3: Version w/ modifications

mvn testrunner:<plugin2>

Process With My Work


