
Accommodating Test Dependence In
Regression Testing Algorithms

Jonathan Xue

Mentors: Wing Lam, Reed Oei

Example 1. The addition and subtraction functions are both valid yet depending
upon the order in which the test suite is run, a false negative may occur.

testAddition → testSubtraction results in two successful tests, while
testSubtraction → testAddition results in two failing tests

1. Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy.
2015. The art of testing less without sacrificing quality. In ICSE’15,
Proceedings of the 37th International Conference on Software Engineering.
Florence, Italy, 483–493.

2. Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanc Muslu, Wing Lam,
Michael D. Ernst, and David Notkin. 2014. Empirically revisiting the test
independence assumption. In ISSTA 2014, Proceedings of the 2014
International Symposium on Software Testing and Analysis. San Jose, CA,
USA, 385–396.

References

400 Engineering Hall, MC 268
1308 West Green Street

Urbana, IL 61801

• Software tests enable developers to quickly
identify errors and bugs [1]

• Regression Testing
• The process of testing existing software

functionality after the introduction of
modifications within the code

• Three main techniques:
• Test Prioritization: Runs the tests in an

execution order such that tests which are
likely to fail are ran first

• Test Selection: Runs a subset of tests such
that only the tests affected by modified
elements are ran

• Test Parallelization: Runs tests
simultaneously across multiple
machines/CPUs

• Dependent Tests
• Tests which yield different test results

depending on the order of the test suite
(example 1)

Background
• Write two separate Maven Plugins to help

automate the process of accommodating
dependent tests within testing algorithms
• Plugin 1 (runs on version w/o modifications):
• Instruments source and test classes to

gather time and coverage information of
each test for regression testing techniques

• Precompute test dependencies
• Plugin 2 (runs on version w/ modifications):
• Accommodate test dependencies on new

versions using precomputed dependencies
from Plugin 1. Test outputs should now
ideally no longer contain false positives or
negatives due to order-dependent tests

My Work

• Helps developers accommodate dependent tests
so that they are not blocked by false positives/
negatives and can focus on more pressing issues
(e.g., shipping new features)

• Microsoft estimated that for complicated systems
like Windows, the cost of test result inspections
(i.e. verifying if test failures are due to dependent
tests) can cost $2 million a year [1]

Importance

• Plugins work on any Maven repository
• Plugins reduce the process to three simple steps

with trivial manual effort
• Use of our work is 7.1% faster at producing

reliable outcomes than regression testing
algorithms that assume test independence [2]

Benefits

Step 1: Download the necessary repositories
Step 2: Setup the necessary variables (e.g.
versions, paths, dates)
Step 4: Precompute test dependencies
Step 5: Move necessary files to their
designated locations
Step 6: Setup necessary variables
Step 7: Run regression testing algorithms
while accommodating test dependence

Process Without My Work

Step 1: Insert two blocks of XML
code into the pom.xml file of both
versions
Step 2: Version w/o modifications

mvn testrunner:<plugin1>
Step 3: Version w/ modifications

mvn testrunner:<plugin2>

Process With My Work

